

Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity

Monisha Gupta I PUI23223 I DRP S2025

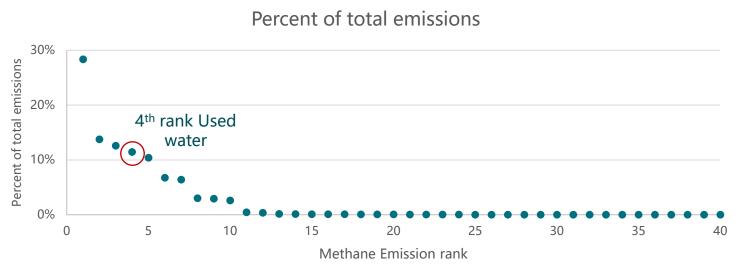
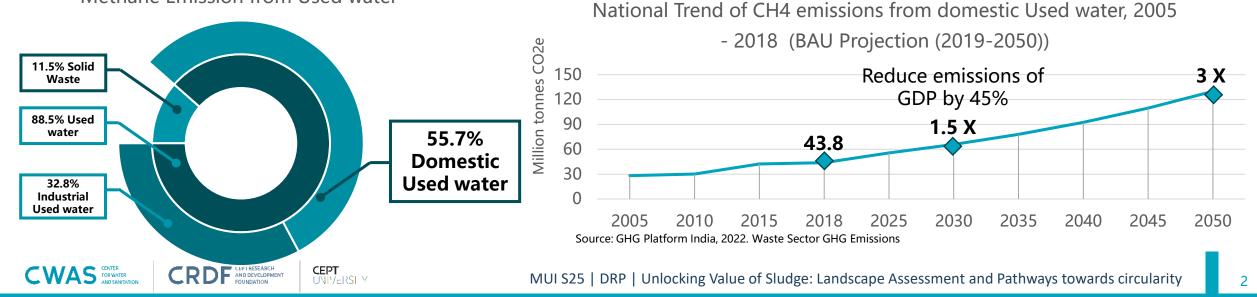
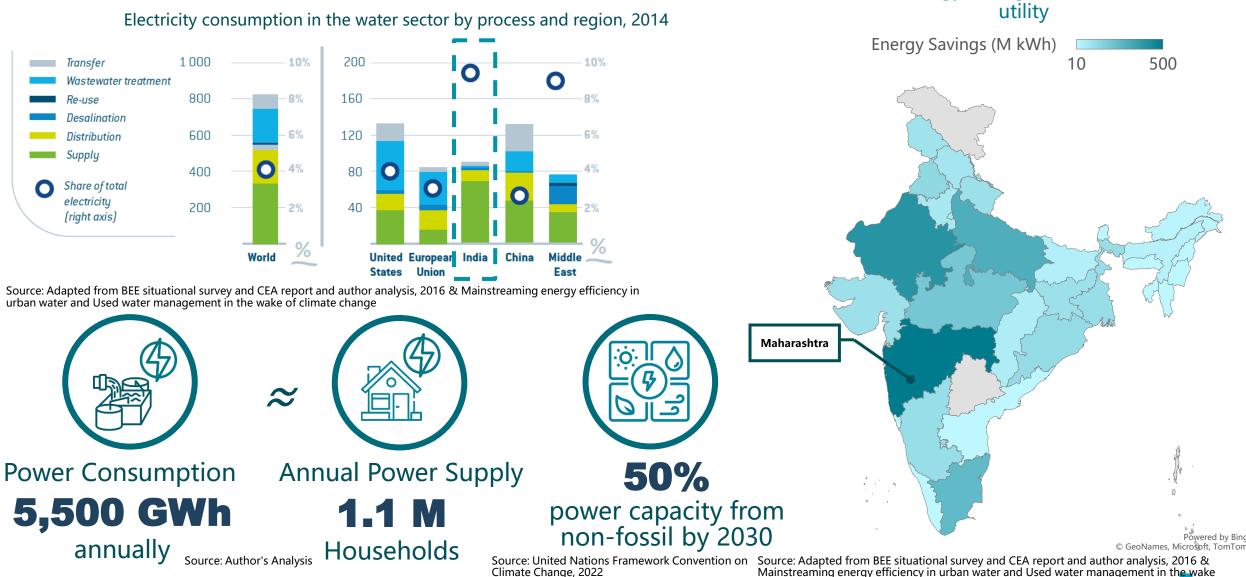

Guided by: Jigisha Jaishwal & Co-guide: Karan Patil

Photo Source: Author's Work



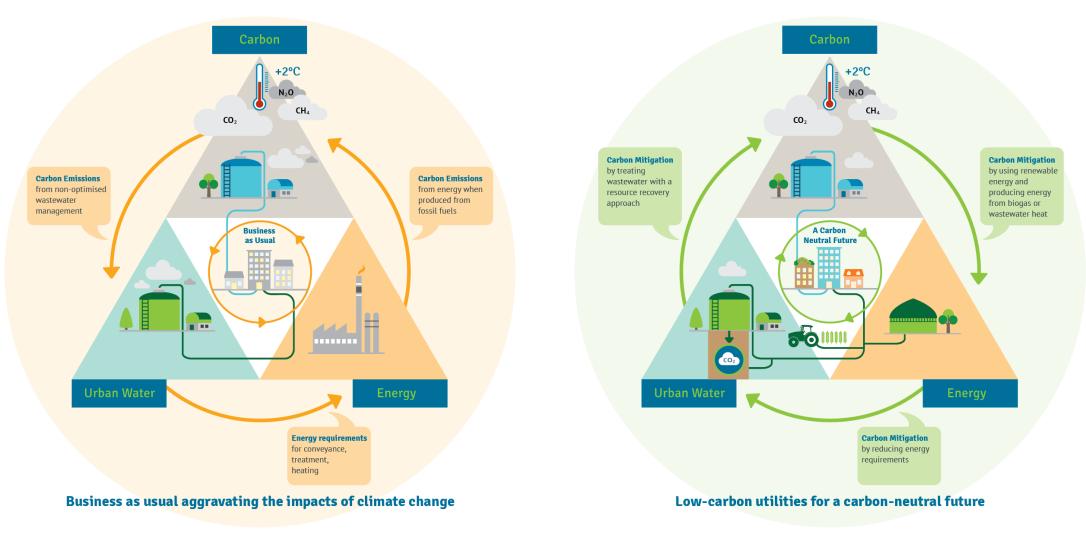
Methane Emissions from Domestic Used water in India: Trends & Significance



Source: Adapted from Cleveland, C. (2025, January 13). Global anthropogenic methane emissions, 1970-2022. Visualizing Energy

Methane Emission from Used water

Used water sector accounted for 4% of global electricity consumption in 2014 Potential energy savings across states in water


CWAS

CEPT UNIV∈RSEY

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity 3

of climate change

Link between urban Used water and emissions & Resource recovery

Source: Yan, X., Liu, X., He, L., & Bai, X. (2024). Greenhouse gas emissions from sanitation and Used water management: A global perspective. Journal of Water and Climate Change, 15(4), 1797–1814.

CRDF CEPT RESEARCH AND DEVELOPMENT FOUNDATION

CEPT UNIVERSEY

CWAS

Liquid waste is always prioritized under circular economy

"The circular economy is a model of production and consumption that aims to minimize waste and extend the lifecycle of materials".

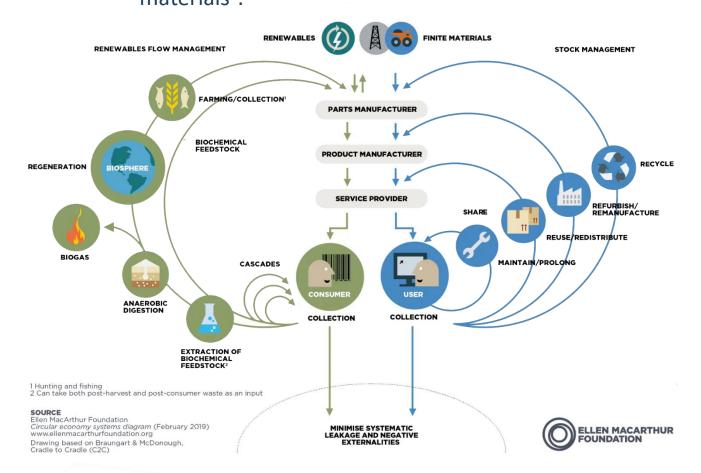
Sludge

- Resource Recovery
- Regeneration

Used water

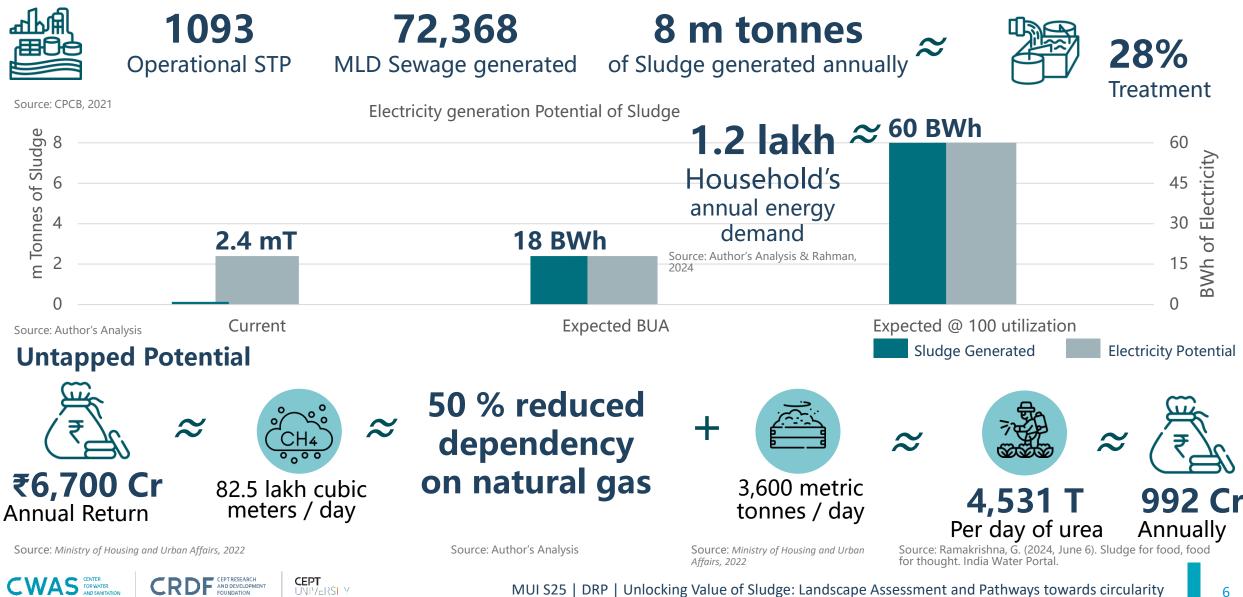
CRD

CEPT RESEARCH AND DEVELOPMENT

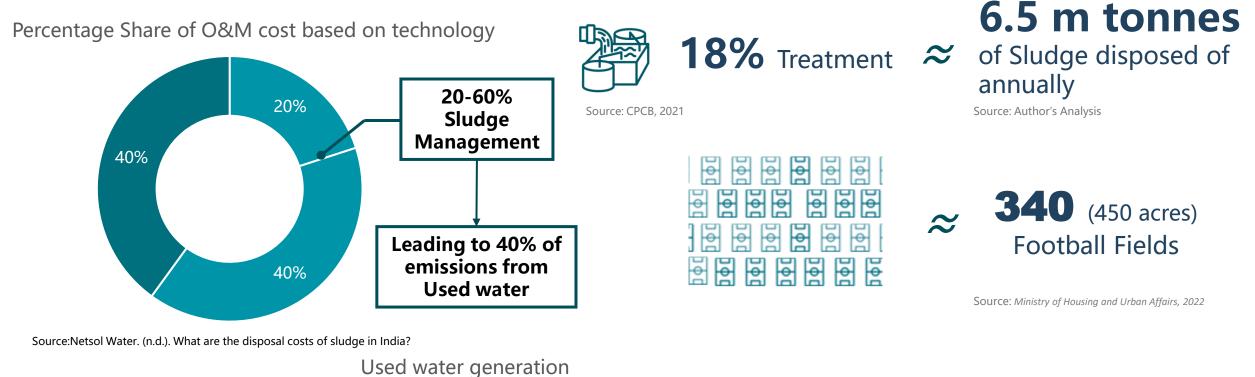

CEPT

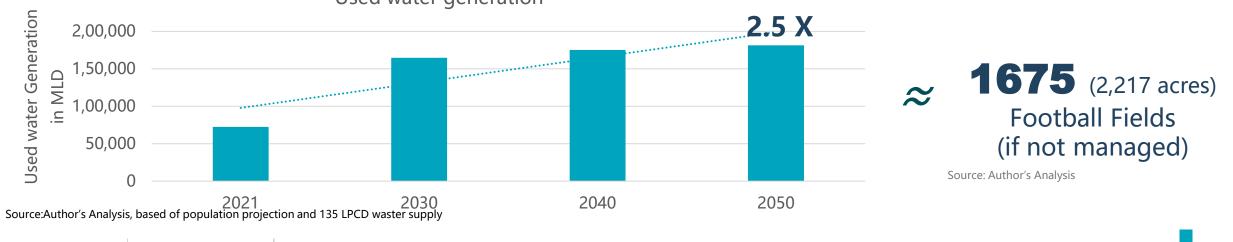
UNIVERSEY

Reuse


CWAS

• Recycle


Eight million tonnes of sludge generated annually in India


Current Situation

Key Challenges in Sludge Disposal for ULBs

CEPT UNIVERSE Y

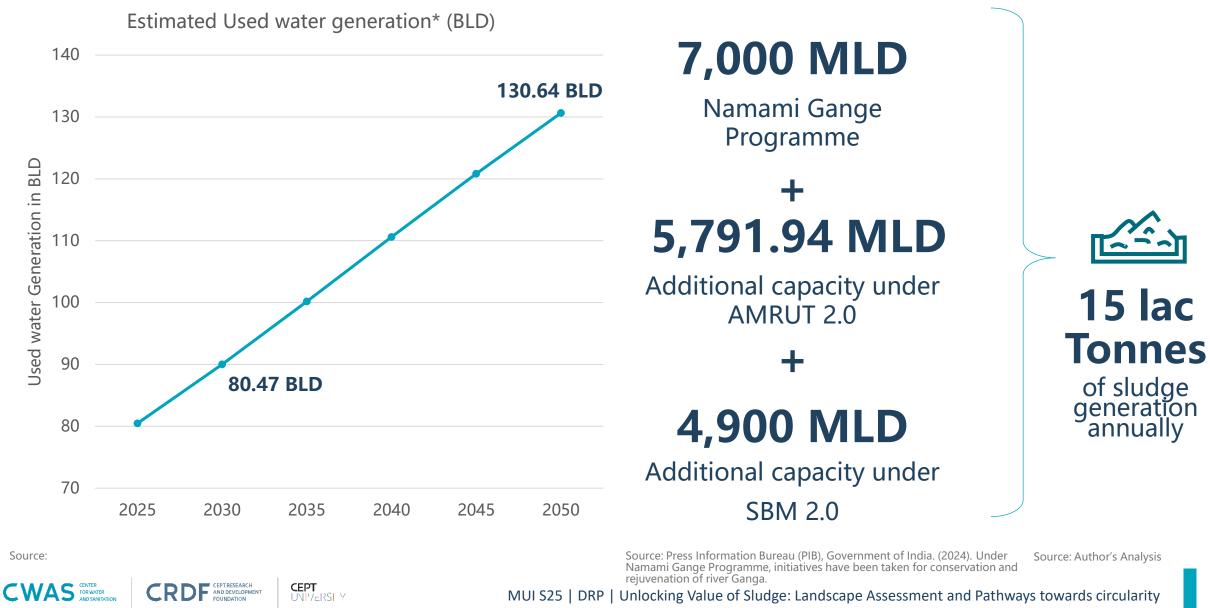
Current Sewage treatment regulations lack standards for sludge management in India

Sewage Treatment Regulations in India — Central and State Guidelines

National Green Tribunal

CPCB

Z HANDROCK IS She is more


Ministry of Environment, Forest & Climate Change

S. No	Parameter	NGT	СРСВ	MoEF&CC
5. NO	Farameter	Class I Cities	Class I Cities	Class I Cities
1	Outfall pH Range	5.5-9.0	6.5–8.5	6.5-9.0
2	Biochemical Oxygen Demand (BOD)	30 mg/L	<10 mg/L	Not Specified
3	Chemical Oxygen Demand (COD)	100 mg/L	<50 mg/L	Not Specified
4	Total Suspended Solids (TSS)	30 mg/L	<10 mg/L	Not Specified
5	Total Nitrogen (TN)	15 mg/L	<5 mg/L	Not Specified
6	Total Phosphorus (TP)	1 mg/L	Not Specified	Not Specified
7	Faecal Coliform (FC)	Permissible:1,0 MPN/100 mL	<100 MPN/100 mL	Not Specified

Source: NGT 2019 Order, CPCB guidelines, MoEF&CC: A Complete Guide to Revised STP Effluent Discharge Standards 2017

STPs upcoming in the ULBs under national Flagship Programs

Aim : To assess the **landscape and market feasibility** of resource recovery of sludge to sustain resilient sanitation services.

Objective :

Review existing resource recovery practices and other potential products across the sanitation sector with the enabling policy environment.

Treatment Technology-wise assessment of methane emissions and their resource recovery potential of sludge.

Carrying **out market feasibility to understand possible business models** to boost resource recovery usage potential.

Recommendations in policy and regulatory frameworks, **to boost the adaptation of sludge potential.**

Scope:

- This study focuses on cities with populations ranging from 1-5 lakh
- The study exclusively focuses on sewage sludge as the primary component of domestic liquid waste.

Hypothesis :

A sludge-based resource recovery business model can make sewage treatment plants financially self-sufficient (based on the technology of STP).

Methodology

Review existing resource recovery practices and other potential products across the sanitation sector with the enabling policy environment.

Document the current recovery of energy (biogas), and nutrients

Identify Potential Value-Added Products

Review national/state policies, guidelines, and schemes that support or hinder resource recovery and reuse

CWAS

CEPT UNIVERSE Y Treatment Technology-wise assessment of methane emissions and their resource recovery potential of sludge.

Collect data on sludge, composition, and plant operations

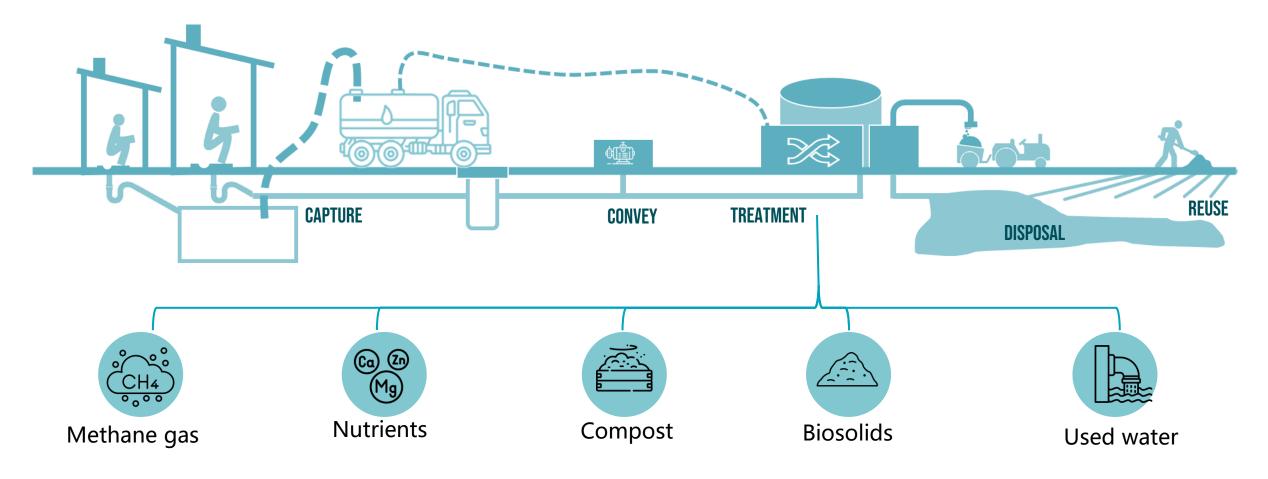
Estimate the methane yield by technology, including recovery and energy potential

Compare technologies by emissions, energy, and nutrient recovery

Carrying **out market feasibility to understand possible business models** to boost the resource recovery usage potential.

Interview end users (e.g., farmers, industrial units) for willingness to pay and quality expectations

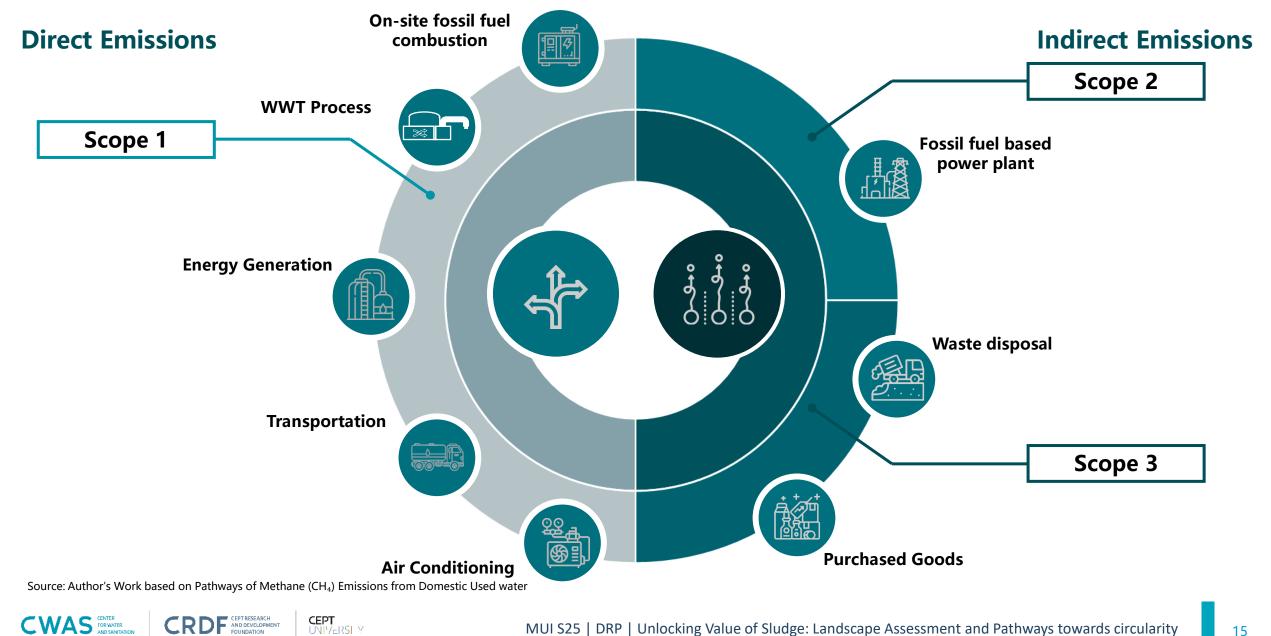
Study existing business models that already monetize resource recovery


Estimate CAPEX, OPEX, and potential revenue streams

Identify market, technical, environmental, and social risks

Recommendations in policy and regulatory frameworks to boost the adaptation of the sludge's potential.

Understanding the resource recovery Potential in Liquid Waste Management


Resource Recovery Potential in Liquid Waste

Source: Author's Work

Pathways of Methane (CH₄) Emissions from Domestic Used water

Biogas market in India is increasing rapidly

Union Budget 2025-26

\$ 2.27

Billion

injection of CBG into

city gas distribution

networks

20%

Relegation of

fossil fuels

Tax

Holidays

Corporate tax

holidays specifically

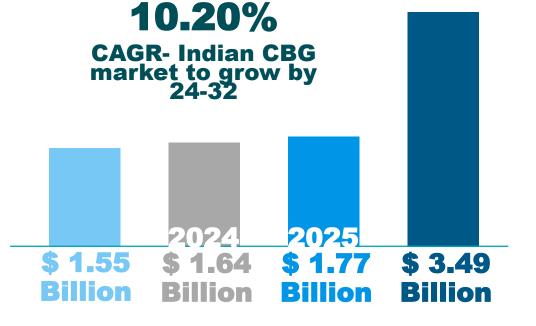
for CBG production

Union Budget 2023-24 \$ 4.04 Billion

for move towards **Energy Transition**

5%

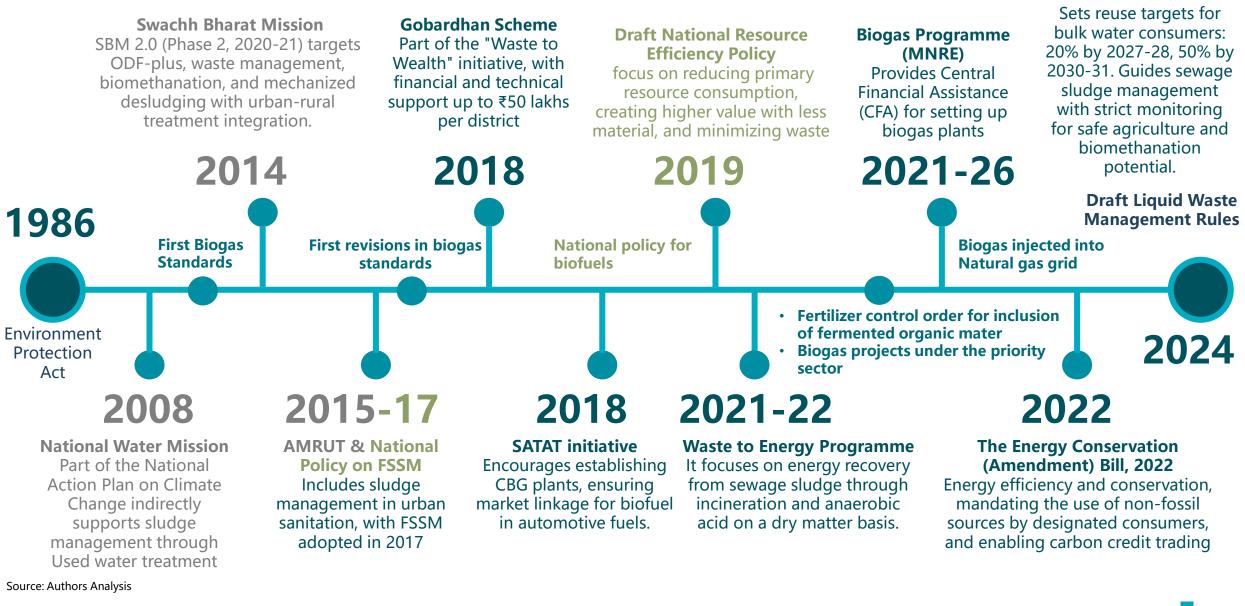
CBG mandates to be introduces


Excise Duty On CBG to be exempted

Source: National Budget

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity

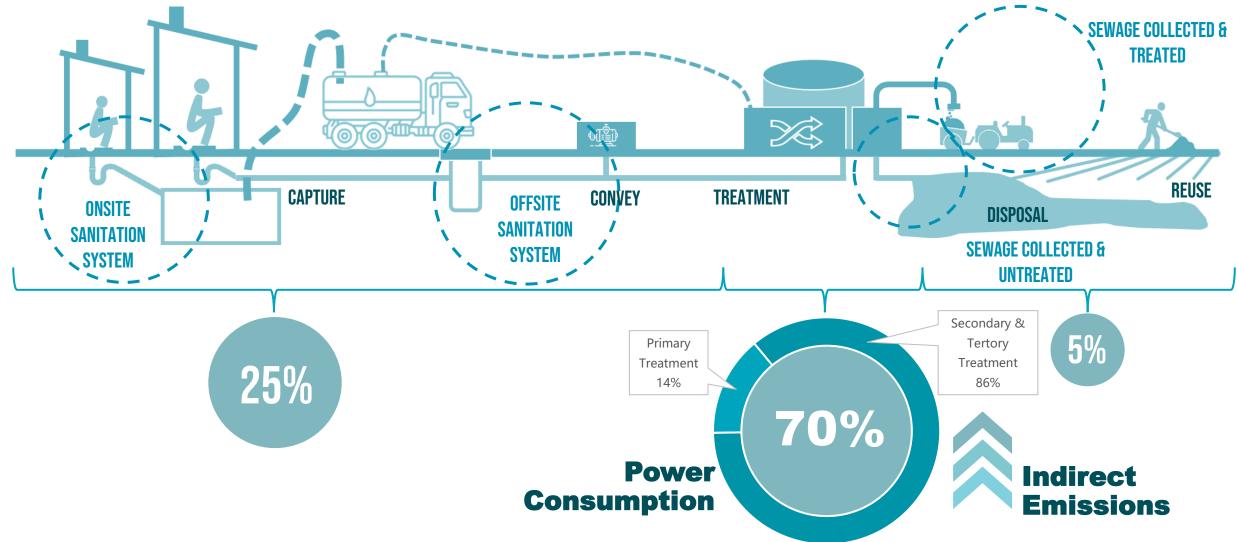
DRIVERS


Abundant Feedstock Availability & Utilization of Waste for Energy Production

Increasing Energy Demand & Fossil-Fuel Consumption

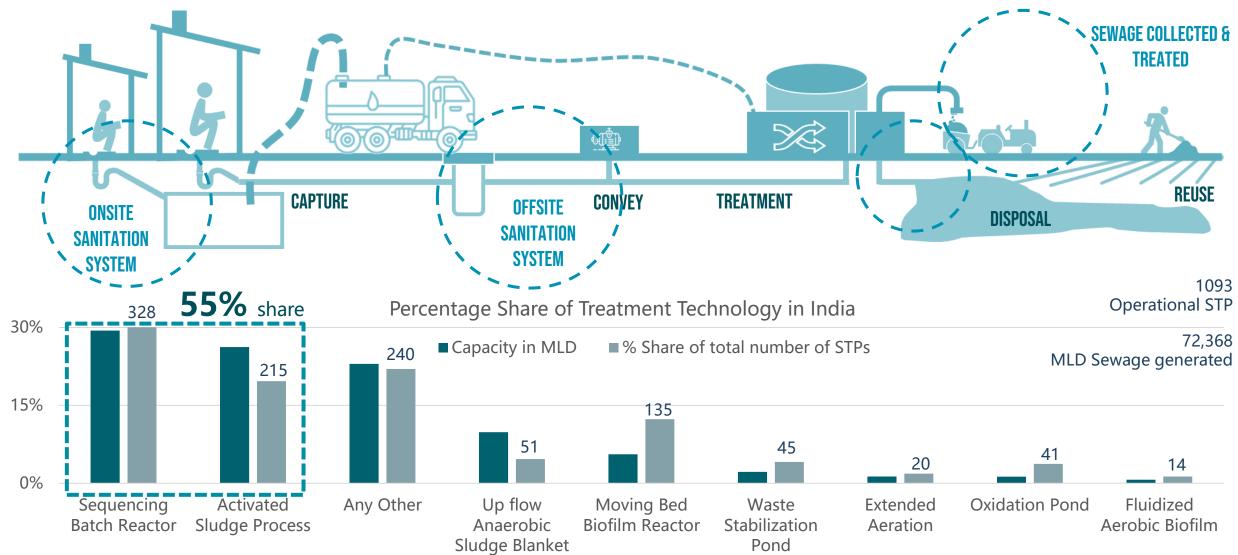
TRENDS

Government Emphasis On Waste Management Schemes.


India has also recognized sludge as a potential

CWAS

The treatment process has the highest power use, causing more indirect emissions


Source: Feacal Sludge and Used water management in Emergencies- Treatment products, UNICEF website. Sharawat, I., et al. (2020). Analysis of a Used water treatment plant for energy use and emissions. Int. J. Environ. Sci. Technol.

CRDF CEPTRESEARCH AND DEVELOPMENT FOUNDATION

CWAS

CEPT UNIVERSEY

STPs in India and prominent Technologies

Source: Authors Analysis, National Sample Survey Office. (2019). NSS Report No. 584: Drinking water, sanitation, hygiene, and housing condition in India, Central Pollution Control Board. (2021). Status of sewage treatment in India, 2006 IPCC guidelines for national greenhouse gas inventories: Volume 5 – Waste.

Energy Requirement and Emissions from different STP Technologies

S. No.	Technology	Processes	Power Consumption (kWh/day/ MLD)	Avg. Power Use	Indirect Emissions (in kgCO2e) annually	Avg. Emissions
1	Activated Sludge Process		185.70		17.7	
2	Extended Aeration	Aerobic processes	-	Moderate	-	Moderate
3	Sequencing Batch Reactor		153.70		14.7	
4	Moving Bed Biofilm Reactor	Hybrid biofilm-	223.70	Uinh	21.25	High
5	Fluidized Aerobic Biofilm	based processes	-	High		
6	Up flow Anaerobic Sludge Blanket		125.70	Low	11.94	Low
7	Waste Stabilization Pond	Anaerobic	5.70		0.54	
8	Oxidation Pond	processes	ND		ND	

* These values may differ based on sludge quality

Source: Central Pollution Control Board. (2021). National inventory of sewage treatment plants. Parivesh Bhawan (2012). Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis, Renewable and Sustainable Energy Reviews

Resource recovery Potential of different STP technologies

S. No.	Technology	Processes	Volume of Sludge (kg/MLD)	Methane Production	Electricity Potential (kWh/Ton)	Biogas Generation potential (cubic m/ day/ tonne of sludge)
1	Activated Sludge Process		200.4 ± 45	59-64%	~550	~70
2	Extended Aeration	Aerobic processes	-	-	-	-
3	Sequencing Batch Reactor		192.5 ± 42	54-66%	~500	~65
4	Moving Bed Biofilm Reactor	Hybrid biofilm-	181 ± 5.4	57-62%	~500	~63
5	Fluidized Aerobic Biofilm	based processes	-	-	-	-
6	Up flow Anaerobic Sludge Blanket		128.5 ± 15	50-60%	-	~40
7	Waste Stabilization Pond	processes	80.5 ± 8.1	35-52%	~300	~30
8	Oxidation Pond		ND	ND	ND	ND

* These values may differ based on sludge quality

CWAS

CEPTRESEARCH

AND DEVELOPMENT

FOUNDATION

CEPT UNIVERSEY

Source: Singh, V., Phuleria, H. C., & Chandel, M. K. (2020). Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. *Journal of Cleaner Production, 271*, 122587., Malpani, S. K. (2024, November 5). Biogas production from sewage sludge. Save the Water.

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity

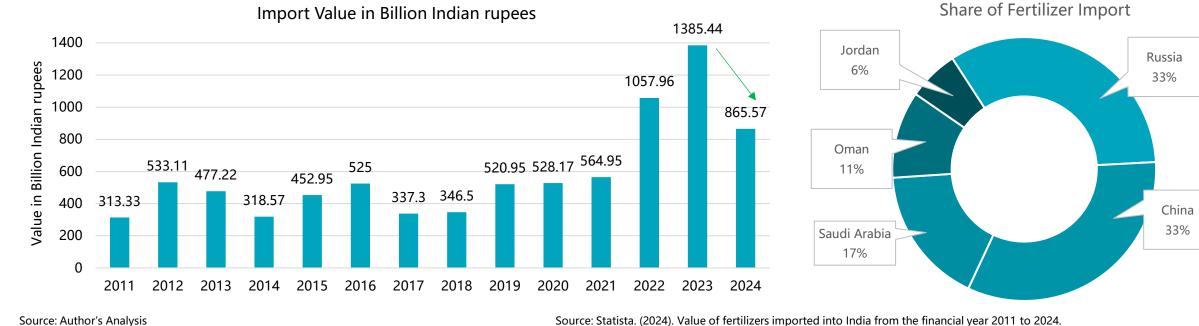
Nutrient Content of Sewage Sludge vs. Chemical Fertilizers

Nutrient	Raw Sludge (%)	Digested Sewage Sludge (%)	Chemical Fertilizer (%)	References for digested sludge and chemical fertilizer
Nitrogen (N)	4.0-6.0	1.5 - 4.0	10-30	Kumar et al. (2017), EPA (2021)
Phosphorus (P)	2.0-6.0	0.5 - 2.0	5-15	Kumar et al. (2017), Cárdenas- Talero et al. (2022)
Potassium (K)	0.2-1.0	0.5 - 2.5	5-10	Kumar et al. (2017), Zhang et al. (2016), Orner et al. (2022)
Calcium (Ca)	3.0-5.0	1.0 - 5.0	1-5	Ghosh et al. (2024)
Magnesium (Mg)	0.4-1.0	0.3 - 1.0	1-3	Johnson (2016)
Sulphur (S)	0.3-3.0	0.2 - 0.8	10 - 20 (as sulphate)	EPA (2021)
lron (Fe)	-	0.1 - 0.5	0.05 - 0.5	Kumar et al. (2017), Ghosh et al. (2024)
Zinc (Zn)	-	0.02 - 0.1	0.01 - 0.1	Cárdenas-Talero et al. (2022)
Copper (Cu)	-	0.01 - 0.05	0.01 - 0.1	Zhang et al. (2016)
Manganese (Mn)	-	0.01 - 0.1	0.01 - 0.05	Orner et al. (2022)
Boron (B)	-	0.005 - 0.02	0.01 - 0.02	Johnson (2016)

Source: Dewil, Raf & Baeyens, Jan & Roels, Joris & Steene, Boudewijn. (2008). The Distribution of Sulphur Compounds in Sewage Sludge Treatment. ENVIRONMENTAL ENGINEERING SCIENCE. 25. 879-886. 10.1089/ees.2007.0143.

CRDF CEPTRESEARCH AND DEVELOPMENT FOUNDATION

CWAS


CEPT UNIVERSEY

22

Nitrogen-based fertilizer production by sludge is 50% of the import

Quantity of N&P contained in Used water generated at present and projected in 2025 (in Lakh Tonnes)					Consumption, Production and Import of N & P (in Lakh Tonnes)								
					Year	201	8-19	201	9-20	202	0-21	Ave	erage
Year	Component	Weak	Medium	Strong	Category	Ν	D	N	D	Ν	P	N	P
	Nitrogen (total as N)	5.28	10.56	22.45	Category	IN	Г	IN	F	IN	г	IN	Г
2021	Phosphorus (total as P)	1.06	2.11	3.96	Consumption	179	69	191	77	204	90	191	78
2030	Nitrogen (total as N)	6.57	13.14	27.92	Production	133	46	137	48	137	47	136	47
(Projected)	Phosphorus (total as P)	1.31	2.63	4.93	Import	47	32	52	24	56	25	52	27

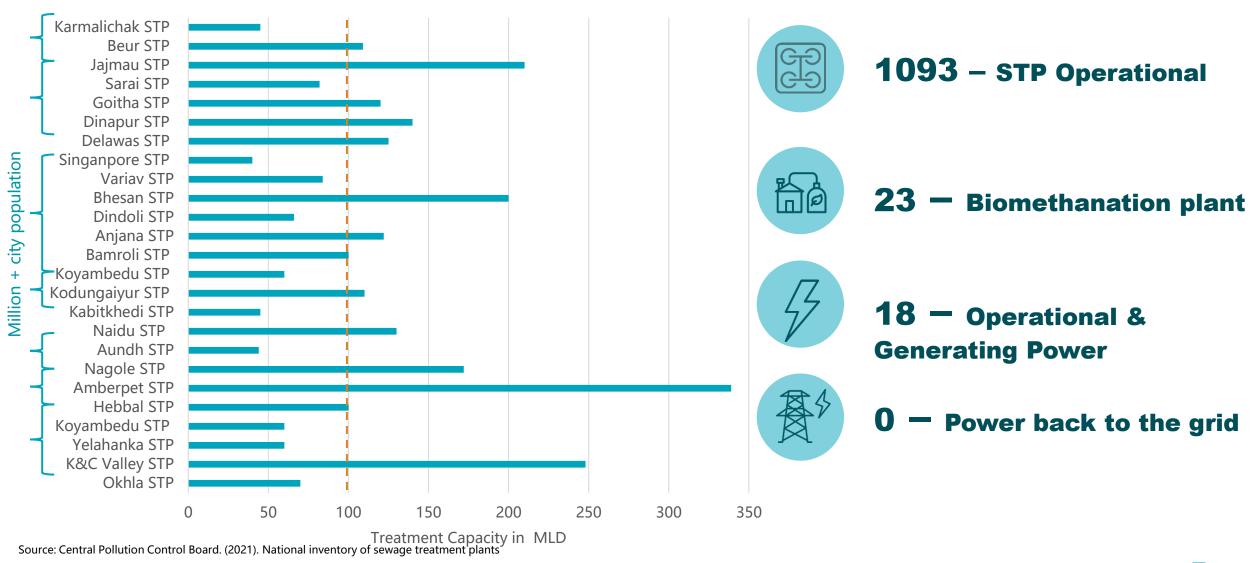
Source: World Bank. (2023). India mineral or chemical fertilizers with nitrogen, imports by country, 2023. World Integrated Trade Solution (WITS).

Source: Author's Analysis

CWAS

CEPT UNIVERSEY CEPTRESEARCH R AND DEVELOPMENT

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity



Existing Practices

Photo Source: Primary Survey

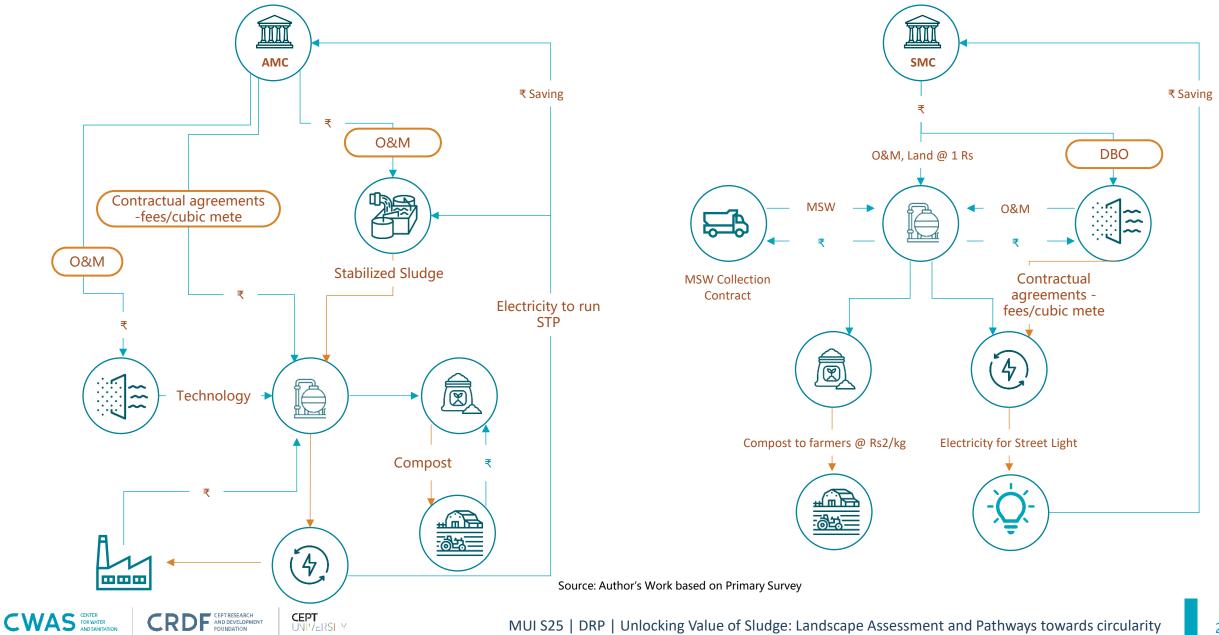
Over 50% of STPs with methane capture units have a capacity above100 MLDSTP with Biomethanation Capacity

CEPT UNIVERSEY

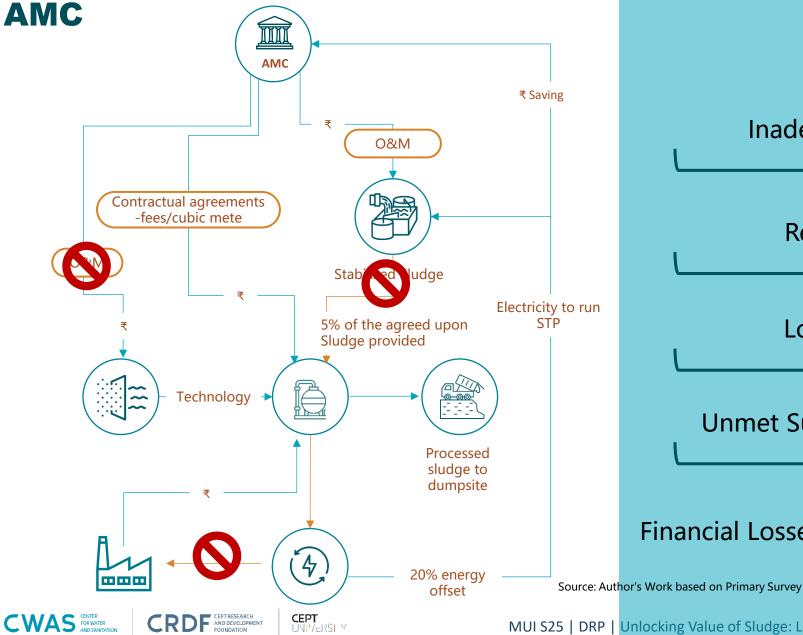
CRDF AND DEVELOPMENT

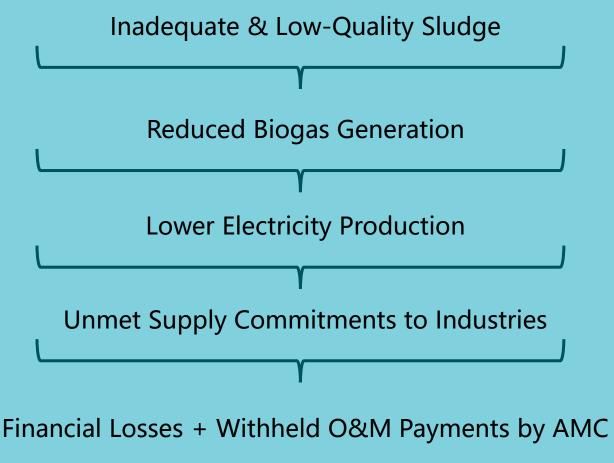
CWAS CENTER FOR WATER AND SANITATIO

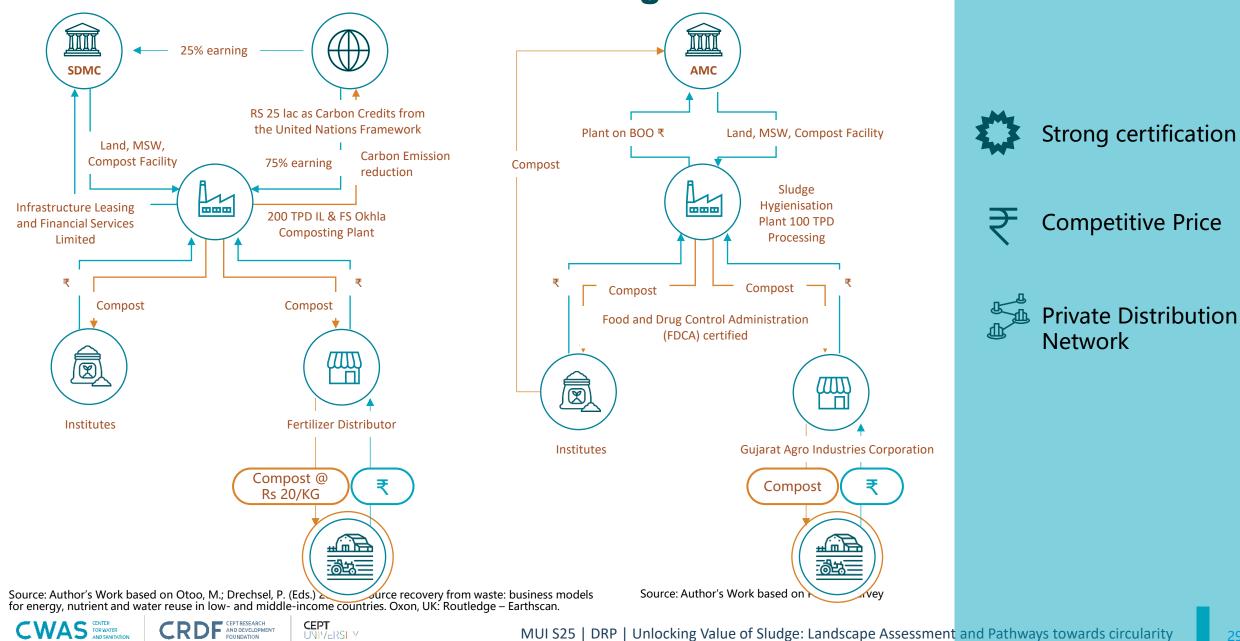
Comparing National Approach- all the projects in large towns


CRDF CEPTRESEARCH AND DEVELOPMENT FOUNDATION

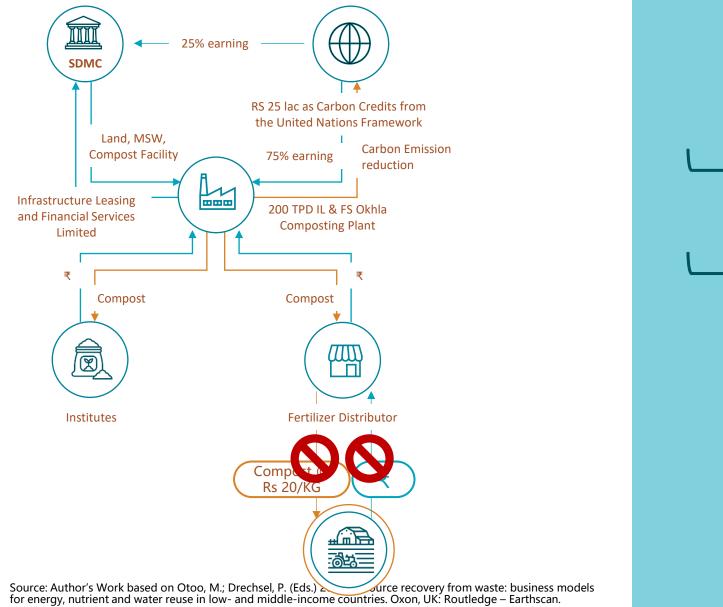
CEPT UNIVERSEY


CWAS CENTER TOR WATER AND SANITATION


STP Name	Location	Capacity (MLD)	Technology	Biogas Use	Quantum of Gas Produced	Funding Source	Source
Okhla STP	Delhi	70	UASB Reactor	Electricity generation, Biogas supplied to nearby area	-	Delhi Jal Board + NMCG	link
Koramangala STF Hebbal STP	, Bengaluru, Karnataka	248 , 100	UASB + Activated Sludge	Powers STP, surplus to grid, meets 50% of plant's power needs	1 MW Electricity	BWSSB + Smart Cities Mission	<u>Link, Link2,</u> <u>Link3</u>
Amberpet STP, Nagol STP	Hyderabad, Telangana	339 (Amberpet), 172 , 320 (Nagol)	UASB + Biogas Recovery	Pvt O&M agency sells biogas to authorized companies (HPCL, IOCL, BPCL, etc.)	~5000 cum/day, 2000 cum/day	HMWS&SB (O&M by private)	Link
Dinapur STP	Varanasi, UP		Activated Sludge Process (ASP)	Electricity at STP, reduces O&M costs	~4,000 cum/day	Namami Gange Programme	<u>Link1, Link2</u>
Kodungaiyur, Perungudi, Koyambedu, Nesapakkam STPs	Chennai, Tamil Nadu	110 , 114 , 180 , 94	Activated Sludge Process (ASP)	Electricity for STP operation	1 MW Electricity	Pvt Operators + Chennai Metro Water	Link
Anjana, Variav, Dindoli, Barmoli, Bhesan STPs	Surat, Gujarat	122 , 84 , 66 , 100 ,		Power generation for STP operation	-	Surat Municipal Corp + Enviro Cont Pvt Ltd	Link
Pirana STP	Ahmedabad, Gujarat	155	Activated Sludge Process (ASP)	Power generation for STP operation	-	АМС	Link
Akurdi STP	PCMC, Maharashtra	30	Combitrat SBR	Power generation for STP operation	-	-	<u>Link1, Link2</u>
Delwasa STP	Jaipur, Rajasthan	62.50	Activated Sludge Process (ASP)	Power generation for STP operation	_	Rajasthan Urban Infrastructure Development Project	<u>Link1, Link2</u>


AMC & SMC Business Model for Biomethanation

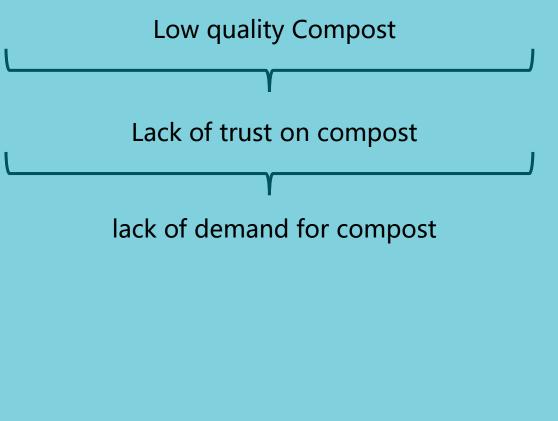
Impact of Low-Quality Sludge on Biomethanation Plant Performance in



SDMC & AMC Business Model for Organic fertilizer

FOUNDATION

29


No takers for tonnes of compost in South Delhi Municipal Corporation

CEPTRESEARCH

FOUNDATION

AND DEVELOPMENT

CEPT MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity

Case Studies: Resource Recovery from Used water Treatment

Category	Xiangyang, China	Toyohashi, Japan	Santiago, Chile	Veolia (China, Germany, and US	
Year Model	2012 BOO (23 yrs)	2017 BTO (20 yrs)	2005 BOT + MoU	— PPP	
Capacity	300 TPD includes: (i) sludge (180–220 TPD) (ii) kitchen waste (80– 120 TPD).	422 TPD including: (i) 315 TPD Sewage Sludge (ii) 59 TPD organic waste	800 TPD		BOT/ BOO Contractual agreements - fees/cubic meter
Inputs	Sludge (180–220 t/day), Kitchen waste (80–120 t/day)	Sewage sludge, Septic sludge, Food waste	760M L/day Used water, 800 t/day sludge	Sewage sludge, Organic waste	BOT/ BOO
Outputs & Products	Biogas (CNG for 300 taxis), Sludge cake (soil amendment)	Electricity (sold via FIT), Carbonized fuel, Solar energy		Biogas, Green electricity, High- quality digestate	₹ Saving
Revenue Streams	CNG (\$1.41M/yr), Sludge cake (\$0.12– 0.13M/yr), Saplings (\$6.3M/yr planned)	Biogas power sales, Fermented sludge sales, Solar energy	Biogas sales (\$3M), Agriculture (free biosolids), Carbon credits (138,516 tCO2e)	Energy sales, Grid	
Key Stats & Impact	\$20.7M investment, 50% biogas for electricity, breakeven with \$37/t subsidy, mitigation potential equivalent to 216k trees/year plantation	Public-private partnership, ownership transfers post-construction, the plant will be operated by Toyohashi Bio Will KK	\$1M profit (2017), 13.5 km gas pipeline, Carbon credits, major GHG	energy self-suff.)	Source: aron, A., Singh, S., Drechsel, P., Ravishankar, C., & Ulrich, A. (2023). Sewage sludge: A review of business models for resource recovery and reuse. International Water Management
	TER CRDF CEPT RESEARCH AND DEVELOPMENT FOUNDATION	CEPT UNIVERSI Y	MUI S25 DR		Institute (IWMI). f Sludge: Landscape Assessment and Pathways towards circularity 31

Case Study: Advanced Sludge and Used water Treatment

Category	Billu	nd Biorefinery, Denmark	
Location	Billund, Denmar	k	
Year of Upgrade/Operation	Initiated in 2015	5, operational since 2017	
Capacity	127 TPD of food	and industry waste	
Partnership Model	Public-Private P a A/S/Veolia)	Partnership (Billund Vand A/S + Kr	üger
Population Equivalent Served	70,000		
Sources of Sludge/Waste	Used water, hou industrial waste	usehold organic waste, agricultura	al and
Treatment Technologies	Integrated techn fertilizer	nologies for water purification, en	iergy &
Biogas Production	Increased energy kWh/year)	y production by 160% (to 22 milli	on
Biosolids Output	Organic fertilize	r for agricultural use	
Reuse/Application	Energy used in-r	plant; surplus sold to grid	
Cost/Investment	EUR 9 million (E	UR 2 million in grants)	
Cost Savings	Sludge treatmer	nt cost reduced by 30–40%	
Key Impact	Model for conve resources	erting urban waste streams into p	rofitable
CWAS CENTER AND SANITATION	CRDF CEPT RESEARCH AND DEVELOPMENT FOUNDATION	CEPT UNIVERSI Y	MUIS

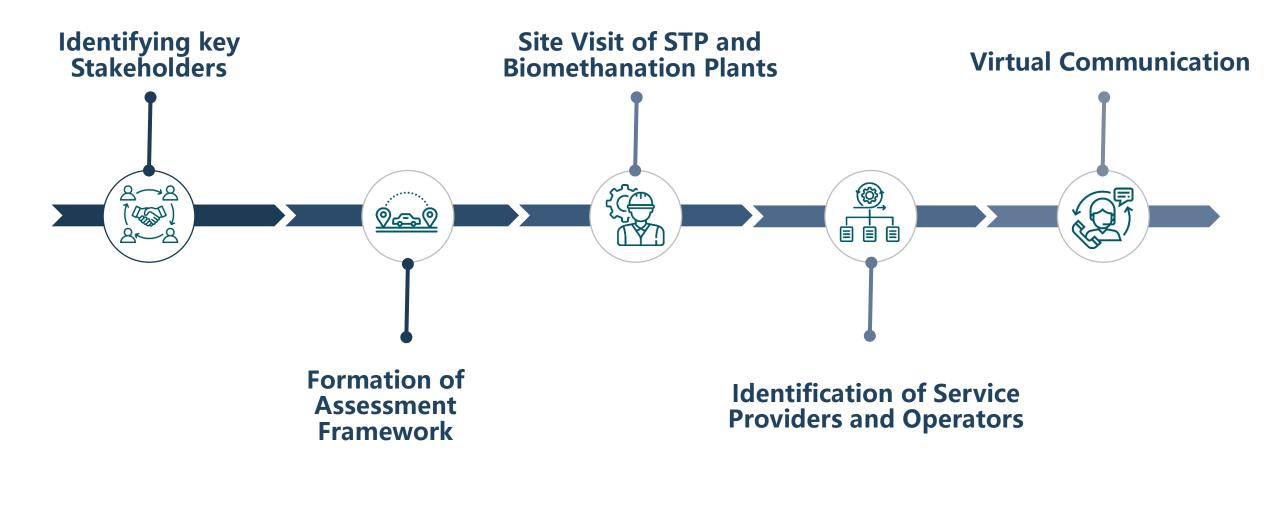
Lessons from International Practices

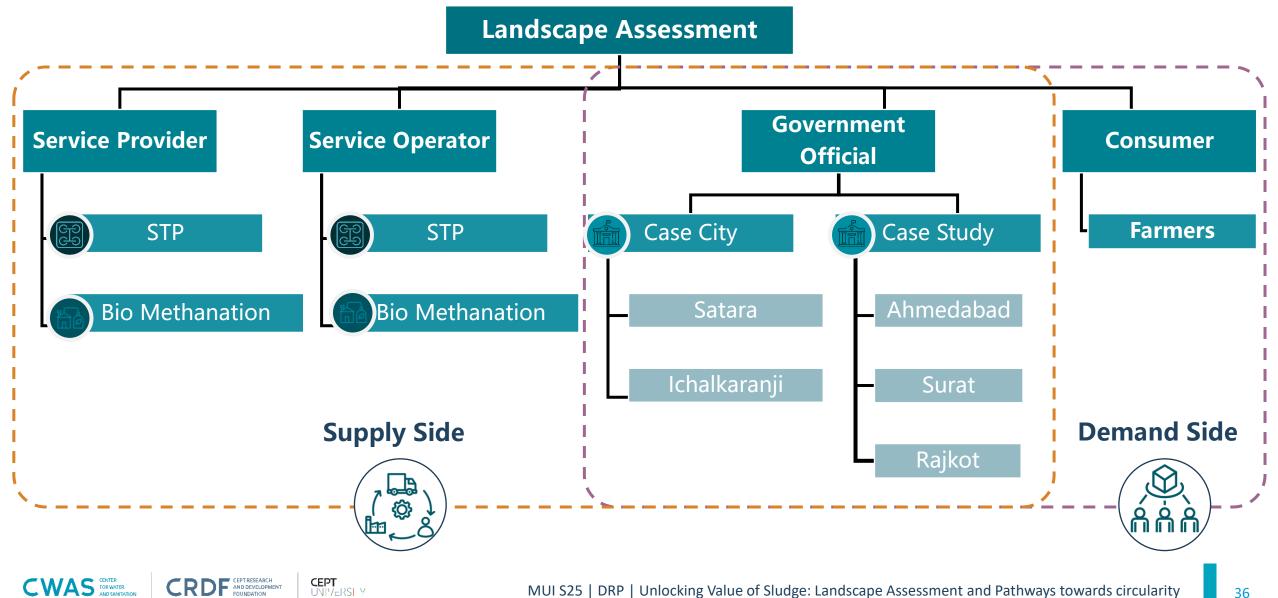
Region	Legal Framework	Primary Use	Key Initiatives	Energy Produced as of 2021 using Sludge as a resource	Sludge Reuse	Applications to India
EU	Directive Law 86/278/EEC, ongoing reviews	Land application in agriculture	Review for new pollutants, cost- efficiency	13583.84 GWh	42% sludge recycled	National Circular Economy Framework
US	40 CFR Part 503, Clean Water Act	Land application, incineration	Biennial pollutant reviews, risk assessments	3198.25 GWh	53% biosolids applied	CPCB-led sludge regulations
Japan	Decentralized, national guidelines	Incineration, energy recovery	Shift to energy utilization technologies	2326 GWh	73.9% sludge incinerated	Incineration for high-density cities
Australia	National biosolids guidelines (2004)	Beneficial use in agriculture	Safe handling procedures, sustainability	581.5 GWh	80% sludge in agriculture	Rural-focused biogas expansion
New Zealand	Targets to reduce landfill, guidelines	Mix of landfill, agriculture	Public engagement, Three Waters reforms	116.3 GWh	95% treatment target	Sludge reuse targets (50% by 2030)
China	GB 24600-2009 and CJ 248-2007 guiding land application	land application and sludge greening	legal framework for sludge reuse aims to promote safe and sustainable utilization	-	-	National Circular Economy Framework

Source: EU: European Commission. (n.d.). Sewage sludge. US: Schaider, L. (2022, May 16). Used water: The best-hidden energy source you've never heard of. World Resources Institute. Japan: Wang, K., & Nakakubo, T. (2021). Strategy for introducing sewage sludge energy utilization systems at sewage treatment plants in large cities in Japan: A comparative assessment. Journal of Cleaner Production, 316, 128282. Australia: Australian Renewable Energy Agency (ARENA). (n.d.). Sewage treatment plants turn sludge into liquid fuel.. New Zealad:

Landscape Assessment: to understand market feasibility and feasible business models

CEPT UNIVERSEY


CWAS


Methodology for Landscape Assessment

CWAS

CEPT UNIVERSEY

Approach for Landscape Assessment

CEPT UNIVERSEY

Assessment Mode

Biomethanation- Operators & Providers

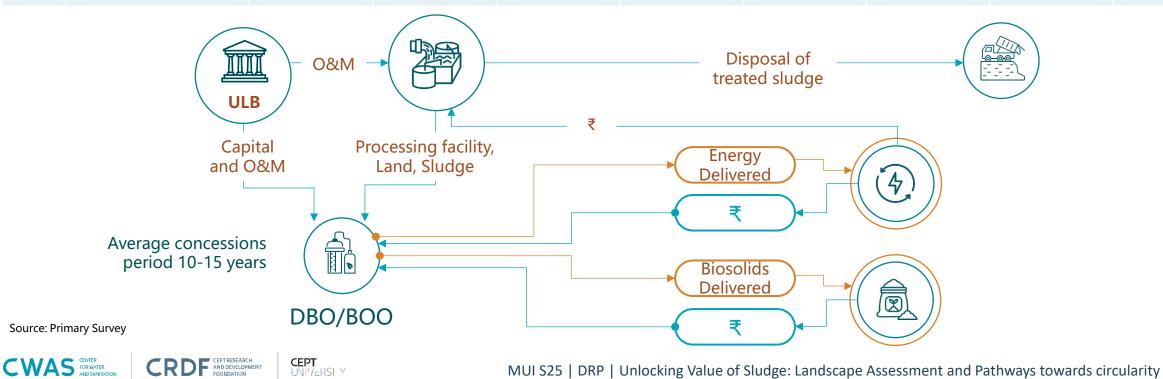
CWAS

CRDF AND DEVELOPMENT

SWM Biomethanation Plant

Used water Biomethanation plant

10 +


Service Operators

25

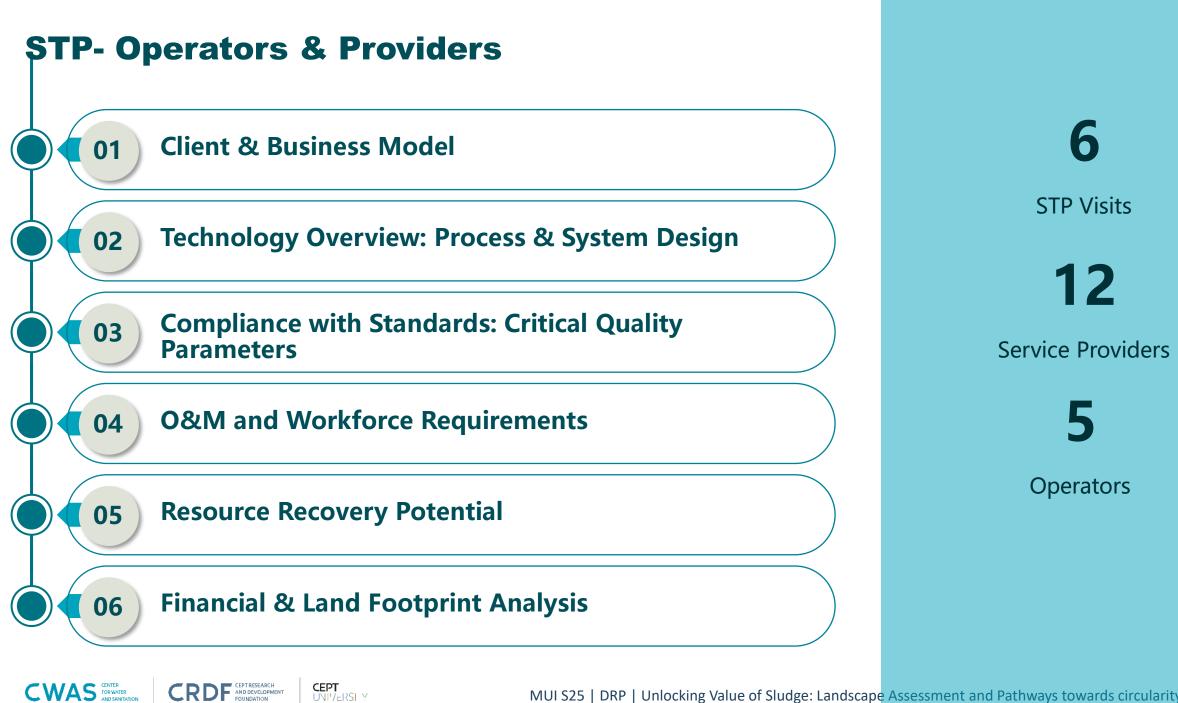
Service Providers

Biomethanation Plant Assessment

S. No.	Plant Capacity (in cubic meters)	Min Area (in acres)	Electricity (in KW per day)	Raw material (in Ton)	Human Resource	Capital Investment (in Cr)	CBG (in KG)	Fertilizer (in Ton)	ROI (in years)
1	12000	4-6	200	100-240	40	18-20	4500-5500	40	2-3
2	6000	3-5	100	50-120	20	8-10	2500	21	2-4
3	2400	2.5-4	50	20-40	12	3-5	1000	8	3-5
4	2100	1-3 acres	<40	15-20	12	2-4	-	-	5-7

Integrated Treatment of Sewage & Organic Solid Waste Useful for Decentralized Applications

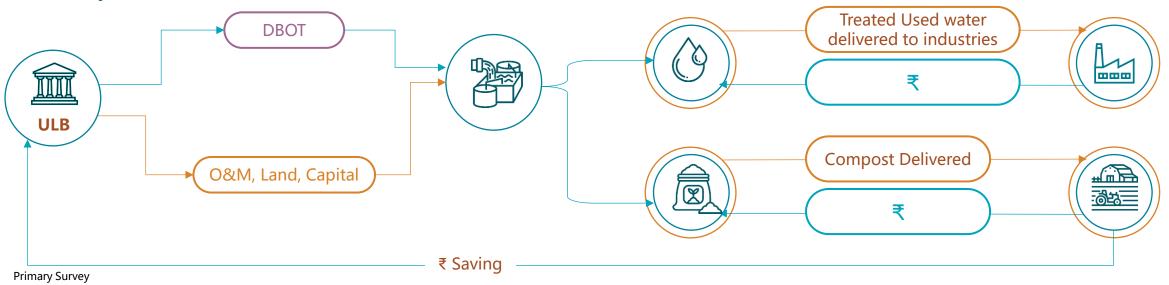
- Sewage generation- 2-4 MLD
- Min Processing- 100kg/day
- Waste Generation- 5-10 TPD
- Min Processing- 250 kg/day
- Outputs -biogas, bio manure, and reusable water.


Biogas & Fertilizer

- Sewage generation- 20- 50 MLD
- Min Processing- 10 Tonne/day
- Output- biogas, bio manure

Source: Primary Survey

Comparison of Treatment Costs of Various Technologies for Class I Towns

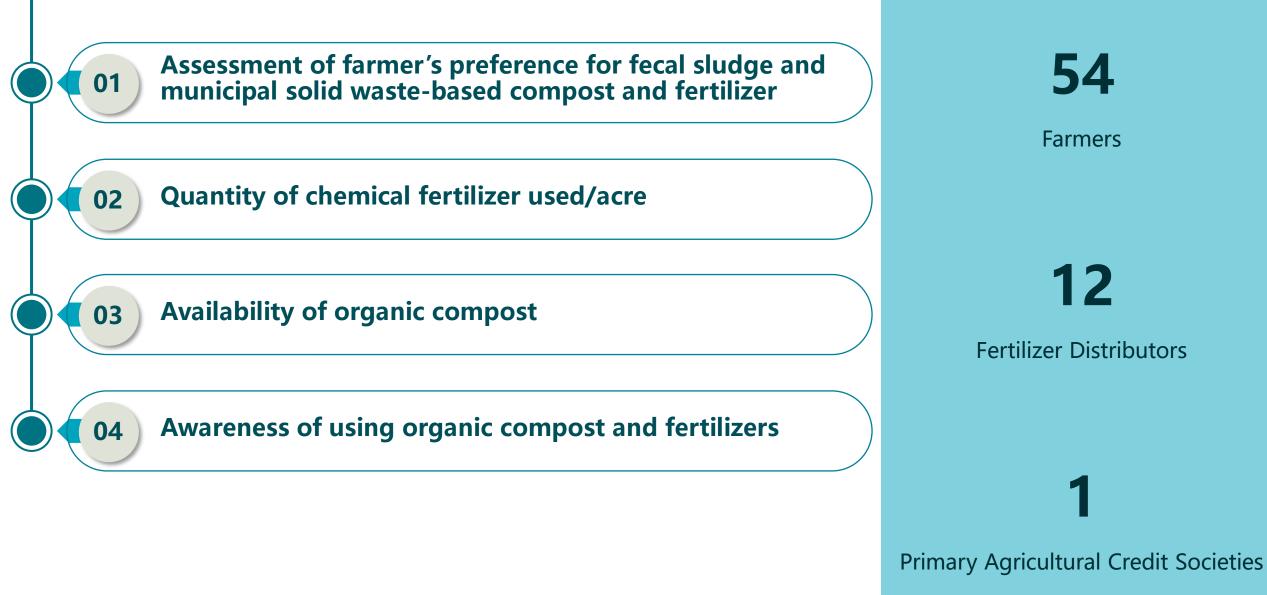

Assessment Parameters/ Technology (per MLD)	ASP	MBBR	SBR	UASB+ EA	MBR	WSP
Capital Cost (Secondary Treatment) (lacs)	68	68	75	68	300	23
Capital Cost (Tertiary Treatment) (lacs)	40	40	40	40		40
Area Required (sq m) Secondary Treatment + Secondary Sludge Handling	900	450	450	1000	450	6000
Area Required (sq m) Tertiary Treatment + Secondary Sludge Handling	100	100	100	100	0	100

Source: Primary Survey & National Mission for Clean Ganga (NMCG). (n.d.). Environmental and Social Management Framework (ESMF) for Namami Gange Programme.

Case City- Indore

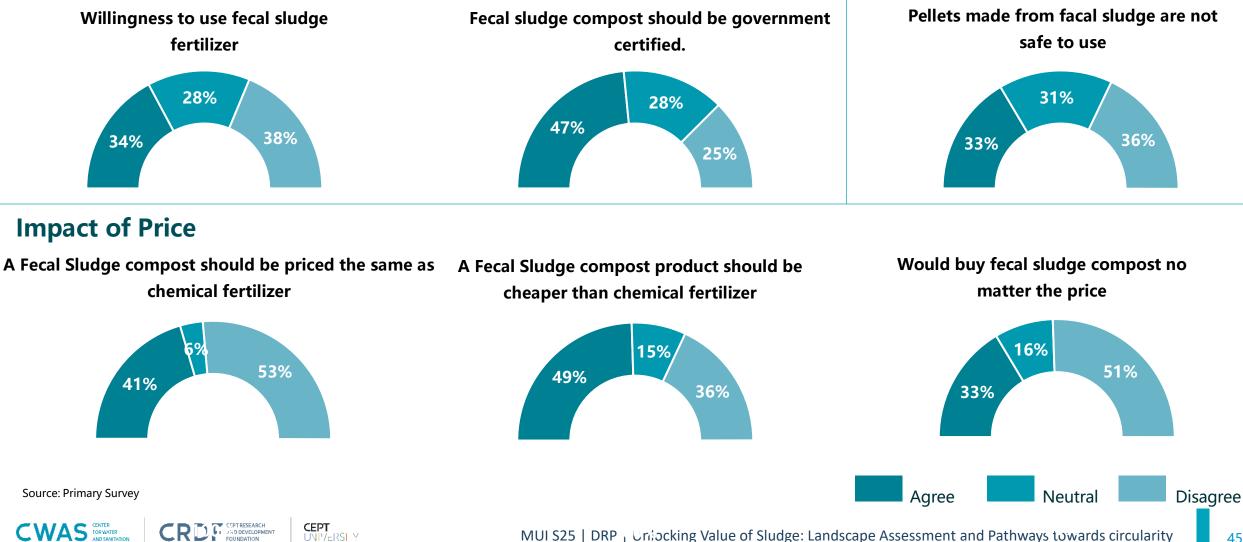
CWAS

CEPT UNIVERSEY



Supply Side Key Highlights

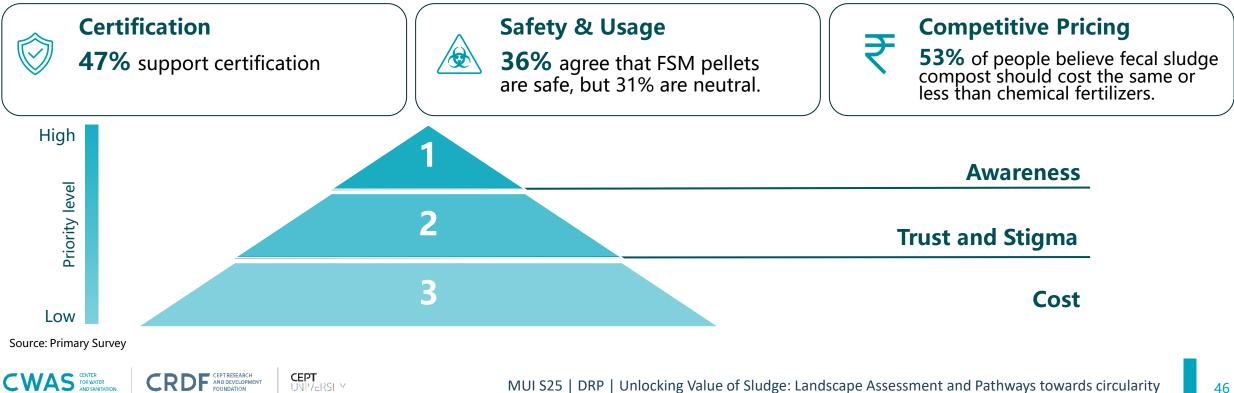
	Biomethanation Plant		STP Plant			
Parameters	Challenges	Implications	Challenges	Implications		
Economic and Financial	High investment, operational costs, market limitations.	Economic unviability, limited scalability	High out-of-pocket opex charges for management of sludge.	The operators struggle to find buyers or practical applications for the output.		
Policy and Regulatory	Inconsistent policies, compliance burdens, lack of incentives	Delays in approvals, increased costs	Waste management and energy production regulations limited and no clear guidelines or incentives	Regulatory hurdles delay projects and increase costs		
Infrastructure	Inadequate storage, purification, distribution facilities	Operational inefficiencies, higher logistics costs	STPs in India are outdated and not designed for biomethanation. Retrofitting them with anaerobic digesters, gas storage, and purification systems demands significant capital and technical expertise	Limited funding and uncertain returns		
Social / Human Resource	Resistance due to odors, noise, and environmental concerns	Project delays, community opposition	Shortage of trained personnel	Leading to operational inefficiencies, frequent downtime, and higher maintenance costs, undermining plant reliability.		
Feedstock and Technical	Variability, inhibitors, low methane yield, digester stability	Reduced efficiency, higher pretreatment costs	Mixed industrial and domestic waste, resulting in inconsistent organic content	This variability can lower biogas yields		
CWAS CENTER TORWATER AND SANITATION	CWAS CENTER TO TWATTER TO DEVILIPMENT COUNT AND DEVILIPMENT AND DEVILIPMENT COUNT AND DEVILOPMENT AND DEVILOPMENT AND DEVILOPMENT COUNT AND DEVILOPMENT AND DEVILOPMENT AND DEVI					


Potential Consumers

CWAS CENTER FOR WATER AND SANITATION CEPT UNIVERSEY

Assessment of farmer's preference for fecal sludge and municipal solid waste-based compost and fertilizer

Willingness and Trust



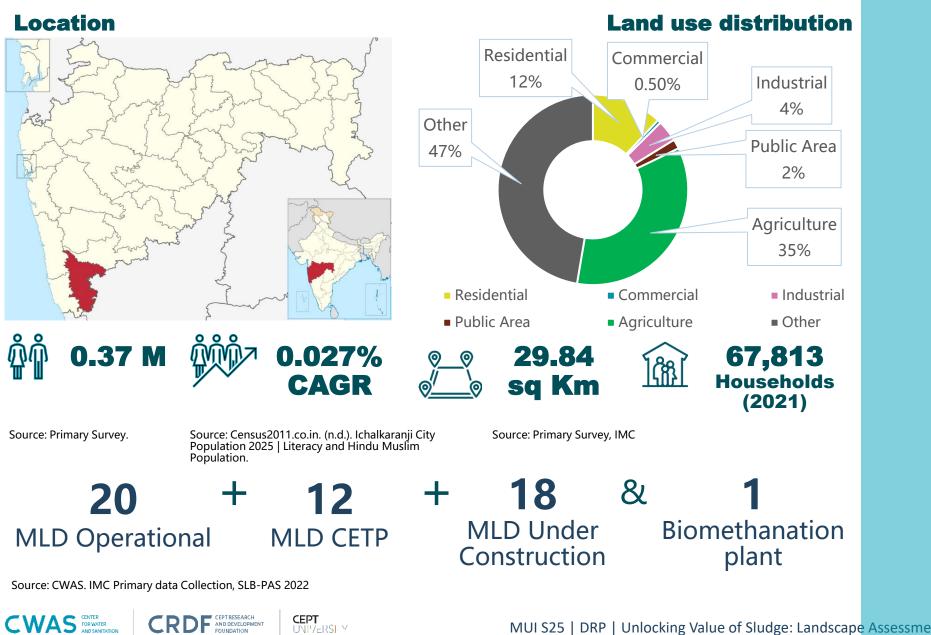
Safety

N = 54

Barriers and Perceptions Toward Fecal Sludge Compost Adoption

	Chemical	fertilizer	Organic Fertilizer			
	Ratio (Per Acres)	Drice (Pener Ka)	Patia (Dar Acros)	Price (Rs per Kg)		
Nutrient	Ratio (Per Acres)	Price (Rs per Kg)	Ratio (Per Acres)	Solid	Liquid	
Nitrogen (N)	1	6-7		10-30	> 30 due to high processing costs)	
Phosphorus (P)	1	28-30	Yet to connect with			
Potassium (K)	1	10-12	farmers practicing organic farming			
Sulphur (S)	3	10-12				

City Profile & Local Government Perspective



City Profile of Ichalkaranji

AND DEVELOPMENT

132 pph

Population Density

77% **Dependency on IHHTs**

40% **Sewerage System**

Covers

16.2 **MLD Sewage**

Collected

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity

IMC to expand both the sewage network and STP

20 MLD – Extended Aeration Technology

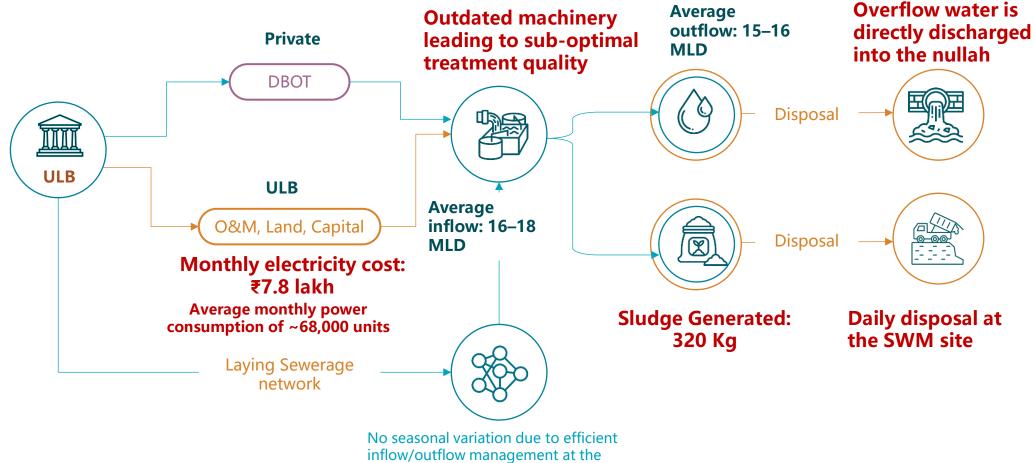
- 1994- till date
- ₹ 1,44,932/ month O&M on- Human resources, electricity, sample testing, and chlorination (FY2024)

₹ 3.36 Cr – Upgradation of technology

- Till 2010- ₹1000/ acre Used water and ₹2 kg compost to the farmers.
- 2011-till date free of cost

18 MLD- SBR technology

- Functioning to start by December
- Target to expand sewage network by 2027
- 19.5 and 13 MLD to be added in future
- Site near Scheduled Desludging pit.


Source: Primary Survey

Sewage Treatment Plant (STP) Overview

pumping station

Sludge quality tests are not carried out No reuse of treated Used water

> **CEPT** UNIVERSEY

Primary Survey

5TPD Biomethanation potential left unutilized due to lack of feedstock

Commissioning & Capacity

- Installed in 2022
- Occupies an area of 500 sq. m

Funding Capital Expenditure

• (CAPEX) funded by the Swachh Bharat Mission (SBM)

Operational Requirements

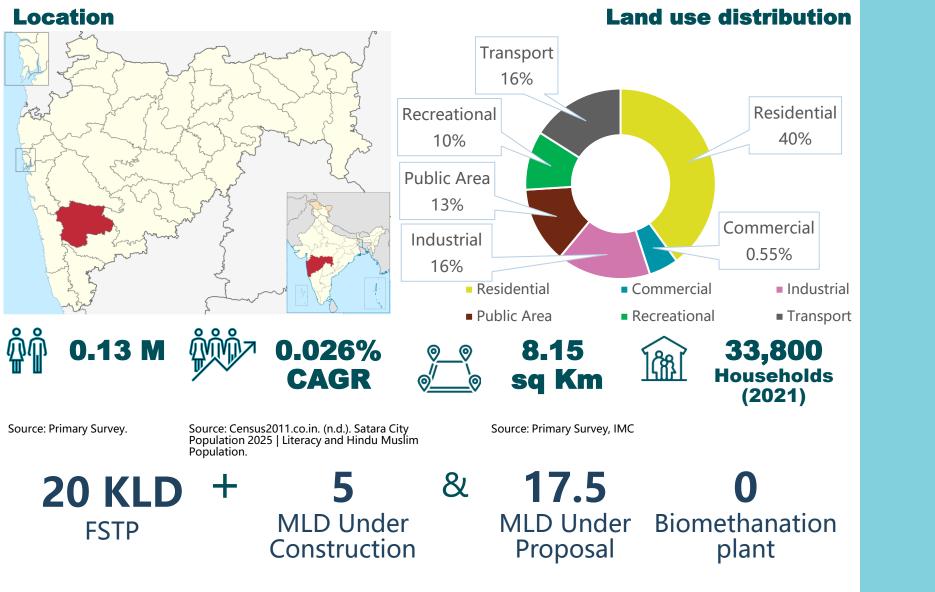
- Requires a minimum of 2 Tons of organic feedstock per day
- Currently receiving 800 kg/day

Key Challenge

 Insufficient feedstock availability hampering optimum operations

Opportunity

 Sludge can be used as feedstock to produce biogas



Source: Primary Survey

City Profile of Satara

CWAS

CEPT UNIVERSEY

147 pph

Population Density

79% Dependency on IHHTs

30%

Sewerage System Covers

MLD Sewage Collected

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity

Sludge Potential of Satara

20 KLD FSSM

- 5 TPD of Sludge
- Currently used as compost for Miyawaki forest on site

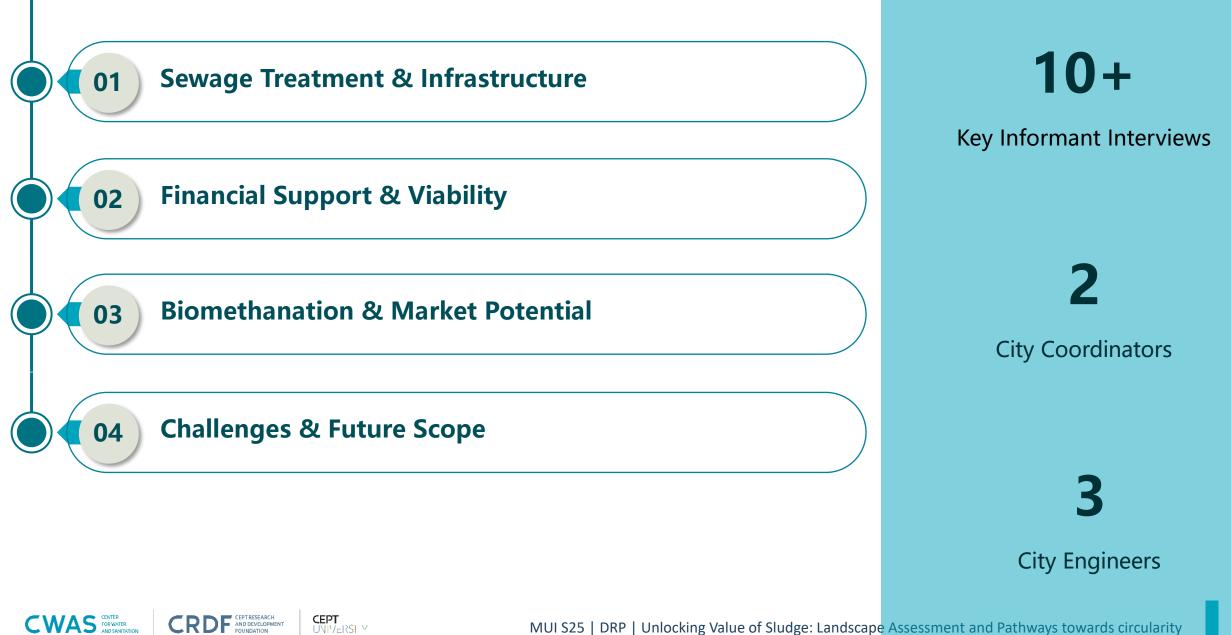
5 MLD -SBR technology

• 100 kg/day Sludge potential

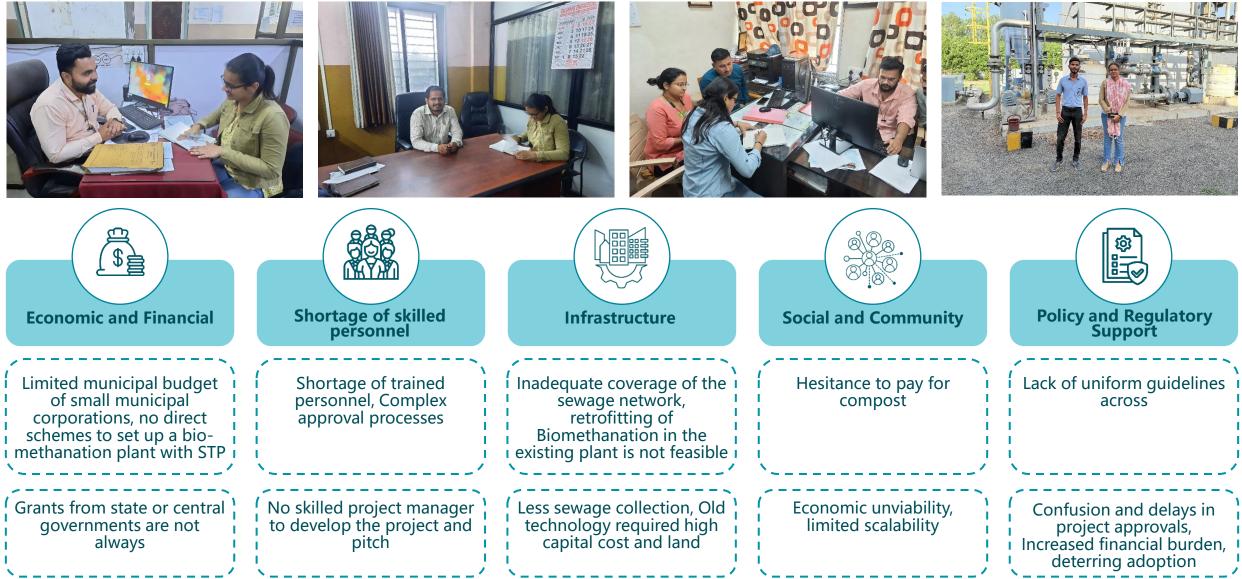
17.5 MLD- SBR technology (Proposed)

• 350 kg/day Sludge Potential

Source: Primary Survey


MUI S25 | DRP

Government officials


CEPTRESEARCH

CRDF CEPTRESEARCH AND DEVELOPMENT FOUNDATION

CWAS

Key Insights

Source: Primary Survey

CWAS

Summarizing Gaps & Challenges

Lack of Cohesive National Policy

- 1. Central-level ministries like MoPNG, MoHUA, and MoEF, etc., consider biomass from cow dung, crops, and MSW, but lack a focus on sludge.
- 2. Despite existing schemes like SBM, FSM Policy (2017), Gobardhan, and Waste to Energy Programme, India lacks a national policy or circular economy framework specifically for sludge reuse.
- 3. The FSSM Policy primarily focuses on the safe disposal of faecal sludge, with limited emphasis on its potential for resource recovery and reuse. Moreover, no established guidelines or standards regulate the use of treated sludge as a fuel.
- 4. The FCO (1985, amended 2009) sets contaminant limits for compost but does not prescribe any dedicated standards for sludge-derived manure, despite its distinct contaminant profile.

Limited Financial Support & Awareness

- 1. Overall, a total subsidy of only Rs 18.9 crore has been released in the last 17 years under both parts of CISS to set up manufacturing units and marketing.
- 2. Despite multiple schemes promoting organic farming, chemical fertilizers continue to receive significantly higher subsidies than biofertilizers
- 3. The Central government's programmes to promote biofertilizers and organic fertilizers are limited in scale and funds and have had limited success. This discourages organic fertilizer from entering the market with competitive pricing, thus, there are no guaranteed takers.

Lack of enabling environment & policies = Lack of project momentum

CEPT UNIVERSEY

CWAS

Low financial support → Weak Market Engagement

High Potential, Low Utilization

- 1. According to the data released in the report "Inventorization of Sewage Treatment Plants, 2015," only 64% of Sewage Treatment Plants out of 1093 are operational, with only 18% of sludge treated, leaving a significant portion of dewatered sludge untreated
- 2. Despite high power consumption and biogas recovery potential, only 23 out of 1,093 STPs have operational biogas recovery units, resulting in substantial missed opportunities.
- 3. Lack of research and implementation on co-processing sludge with solid waste is leading to the utilization of existing infrastructure that lacks feedstock.

Absence of Standardization

- 1. Many states do not have their own laboratories, leading to inferior quality and inauthentic biofertilizer and organic fertilizer products, thus building distrust in the usage of organic fertilizers.
- 2. CPHEEO provides recommendations for managing various types of sludge for land applications but does not provide any standards.

Untapped low-cost local renewable energy sources = Higher investments in fossil fuels, leading to a larger carbon footprint

CEPT

UNIV-RSEN

Lack of labs and standard guidelines = Poor-quality organic fertilizers and low user trust

Small ULBs, Big Challenges

- 1. The current national programs and funding agencies are focusing on infrastructure development, and little to no focus is given on the circular approach of sludge reuse, discouraging small ULBs with limited budgets from taking such projects.
- 2. Lack of capacity to plan and implement projects: The shortage of manpower in municipalities affects the planning, technical expertise, implementation, and monitoring. The small ULBs do not have a full sewerage network, thus, ULB had to invest the majority in facilitating the basic infrastructure.
- 3. National grants and subsidies exclude sludge treatment costs for reuse in benchmarking, resulting in project undervaluation and increased out-of-pocket expenses for ULBs, deterring them from setting up a biomanthation plant.

Low resources = Limited execution

CEPT UNIVERSEY

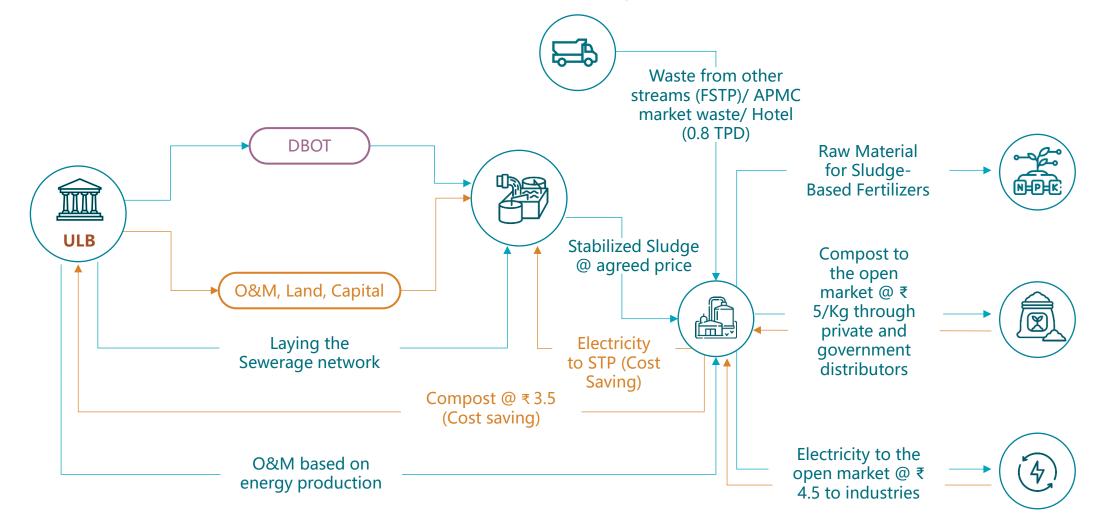
CWAS

Unbalanced Risk, Limited Innovation

- 1. Existing DBO/BOT PPP business models are not viable due to contractual challenges, payment mechanisms, and revenue streams, leaving private investors unwilling to bear the perceived risks of sludge-to-resource ventures.
- 2. Current practice involves that most of the risk is shared by the private entity, leaving them vulnerable to losses, thus discouraging the private parties from entering this sector.
- 3. Shorter concession periods are discouraging the private players from having confidence to invest.
- 4. International case studies highlight SPVs under PPP frameworks as key to driving innovation and investment in advanced sludge treatment, ensuring long-term efficiency, financial viability, and balanced risk-sharing. In contrast, MoHUA's model RFP for "Waste to Compressed Biogas Project" restricts sludge use, limiting these opportunities.

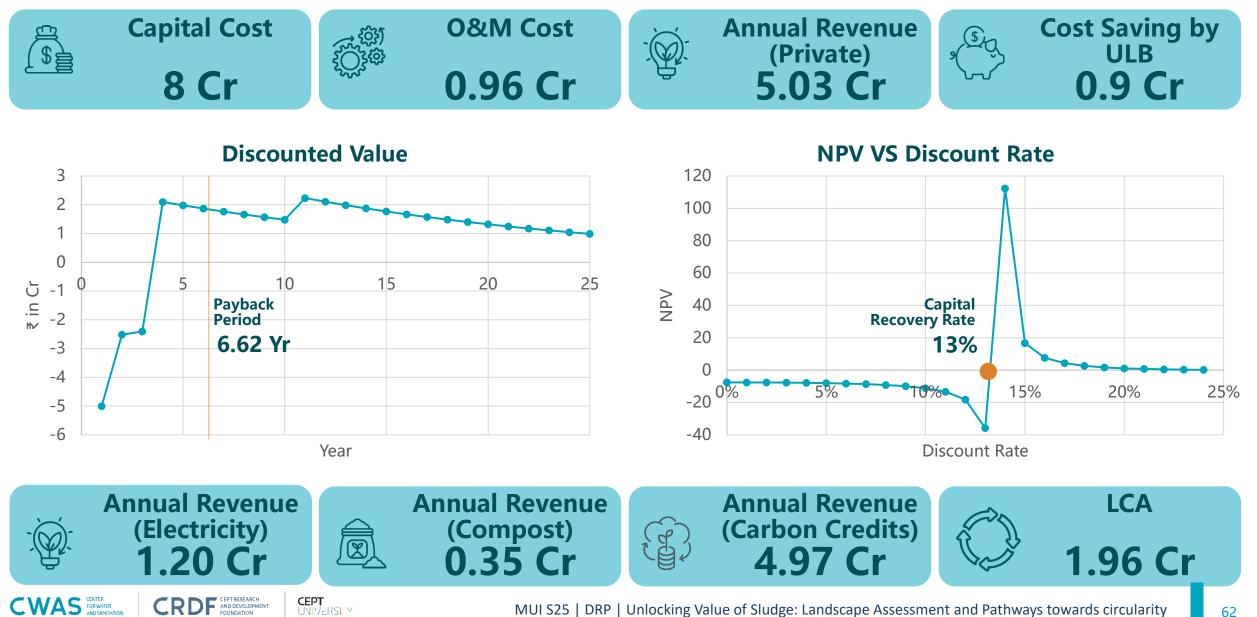
Balanced partnerships = Sustainable innovation

MUI S25 | DRP | Unlocking Value of Sludge: Landscape Assessment and Pathways towards circularity


Advancing Sludge Reuse and Circularity

CRDF CEPTRESEARCH AND DEVELOPMEN FOUNDATION **CEPT** UNIV∈RSEY

CWAS


Potential Business Model – Ichalkaranji

Source: Author's Work

Economic Feasibility Summary

Roles and Responsibilities- Planning

ULB

- Develop a detailed project report to assess sludge volume, technology, capacity, and cost.
- Align with Maharashtra's comprehensive approach to sanitation excellence policy, which encourages cities to co-treat sludge at STPs via a formal MoU with the STP operator for sludge supply and co-digestion.
- The ULB should be responsible for implementing waste-to-biogas projects and preparing internal resolutions to allocate land and resources.
- Mandate the government and private nurseries to purchase organic compost from the plant to maintain parks, gardens and urban forests.

CWAS

Private Operator (STP)

- Provide STP inflow/outflow data and sludge characteristics (TS%, contaminants), and evaluate existing sludge generation (volume and solids content).
- Ensure STP modifications and upgrades are installed and still meet Maharashtra Pollution Control Board norms for effluent quality.

Private Operator (Biogas)

- Procure consents (EPA, MPCB).
- Conduct detailed surveys of sludge availability (from Ichalkaranji STP and possibly nearby towns). It evaluates suitable anaerobic digestion technology and capacity.
- Secure funding (equity/debt). May utilize schemes: e.g., central/ govt subsidies for bioenergy, carbon credit.

63

- Negotiate SLAs (service levels) and payment terms.
- Run trail tests.

CEPT UNIVERSE Y

Roles and Responsibilities- Operations

ULB

- Monitor compost and energy production.
- Enable compost testing and certification from government-certified labs.
- Licensing of private desludging operators operating within municipal limits.
- The ULB should have an agreement with FS's private contractors to dispose of the sludge as feedstock.

CWAS CENTER FORWATER AND SANITAT

Private Operator (STP)

- If the biogas plant is onsite, pump dewatered sludge directly
- Maintain effluent quality; coordinate with the plant operator; report sludge data.
- Carry out sludge quality testing from certified labs at every 15 days.

Private Operator (Biogas)

而た

- If offsite, arrange transport. Under contract terms, the contractor should handle logistics.
- Supply monthly reports to ULB on quantities of sludge processed, biogas/energy produced, and digestate distributed.

CEPT UNIVERSE Y

Contract Clauses

ULB

- The ULB negotiates a long-term sludge supply agreement with the STP operator (public or contractor) to ensure continuous feedstock.
- The ULB will purchase a portion of both compost and electricity.
- The ULB also coordinates with power/gas utilities if the project produces electricity.
- The ULB (or developer) must apply for Environmental Clearance from the MoEFCC/MPCB.
- Third party quality testing audit for biogas.

CR

CWAS CENTER FORWATER AND SANITAT CEPT UNIVERSE Y

Private Operator (STP)

- Adjust that the sludge is available on the schedule agreed with the biogas plant
- Monitor the STP's performance. The effluent quality should remain within norms and provide records of sludge volumes/qualities to ULB and the biomethanation plant operator.
- Conduct regular sludge tests to maintain sludge standards and implement necessary steps to maintain the right quality of sludge.
- STP operator will maintain annual emission inventory based on IPCC2019 GHG emissions estimation methodology.

Private Operator (Biogas)

- Finalize contracts with ULB (concession agreement or lease) and with STP operator.
- In case of offsite plant Privat Operator will setup infrastructure for sludge transportation.
- Operator will pay security deposit to ULB.

National Policy and Regulatory Framework

- 1. Develop a comprehensive national policy on sludge reuse, aligned with circular economy principles and focused on public health, environmental protection, and economic value.
- 2. Establish clear and enforceable standards for treated sludge reuse, with specific distinctions for land application and other end uses.
- 3. Formulate easy-to-understand biosolids utilization standards to enable safe agricultural use.
- **4. Incorporate sludge reuse indicators** into existing government toolkits like the Swachh Bharat (SB) and Sustainable Sanitation (SS) frameworks.
- **5. Include sludge reuse as compost and biochar** in state state-level climate mission under carbon sequestration strategies.
- 6. Mandate sludge testing for biogas potential and volume as a prerequisite for treatment planning.
- 7. Ban the disposal of sludge at SBM landfill sites to enforce reuse or recycling.

CEPT UNIVERSEY

8. Implement a penalty clause for non-compliance with sludge reuse and recycling requirements.

CWAS

Economic Incentives and Institutional Support

- 1. Adopt a statewide sludge monetization mandate, similar to *Arth Ganga*, requiring sludge-based compost use within a 500-meter buffer of river/nalla rejuvenation zones.
- 2. Include sludge-based fertilizers under the Harit brand certification to promote market acceptance.
- **3.** Offer GST exemptions or tax holidays for sludge recycling and reuse projects.
- **4. Allocate dedicated budgets** for long-term sludge management planning and implementation of standards.
- 5. The Government of Maharashtra adopted a single-window approach to expedite the establishment of the Biomethanation plant by centralizing and coordinating all approvals through a unified system.

Technology Promotion and Infrastructure

- 1. Fast-track environmental clearances (ECs) for sludge and waste processing plant development.
- 2. Promote proven sludge treatment technologies, such as composting, Hygienisation, and incineration with energy recovery.
- **3.** Encourage the use of sewage sludge for Compressed Biogas (CBG) production, integrating it into existing biomass initiatives under the Ministry of Petroleum and Natural Gas.
- 4. Support the establishment of CBG plants across India for integrated solid waste and sludge management.

Monitoring and Quality Assurance

- 1. **Regularly monitor sludge quality**, especially to detect industrial waste contamination in domestic sewage networks.
- **2. Ensure testing infrastructure at the state level** to improve biofertilizer quality and build trust among farmers and consumers.

CWAS CENTER FOR WATER AND SANITATION

Way Forward

ULB can circulate green bonds to fund these projects.

ULB can further integrate domestic solid waste, APMC market waste, and Hotel waste to co-treat for biomethanation.

ULB enables fertilizer production from treated sludge.

ULB can explore the potential reuse of biosolids as construction material.

THANK YOU

Monisha Gupta

PUI 23223

Detailed Project Report I S2025